航空航天医学
航空航天医学是研究人在大气层和外层空间飞行时,外界环境因素(低压、缺氧、宇宙辐射等)及飞行因素(超重、失重等)对人体生理功能的影响,及其防护措施的医学学科。
1770年到19世纪的一百多年的时间里,各国科学家进行了大量的气球载人、载动物的升空试验。当时人们没有认识高空环境会对人体带来危害,没有采取相应的保护措施,以致在升空中发生了人的冻伤、耳痛、意识丧失甚至死亡的严重事故。此后人们便重视和开展高空环境的研究,逐渐认识到低压、缺氧、低温对人体的危害,这是航空医学的萌芽时期。
飞机的制造、飞行是19世纪末20世纪初实现的。当时飞机的性能较低,航行高度仅两千米,飞行速度也仅有每小时500公里。即使这样也发生了晕机、着陆事故、飞机碰撞等急待解决的问题。
第二次世界大战期间,特别是喷气飞机出现后,飞机的性能提高,航行高度增高,速度增快,续航时间延长,出现了由超重、低压、缺氧、低温等引起的医学问题,这迫使各国投入了大量人力物力用于开展航空医学研究。
航天医学是在航空医学基础上发展的。40年代末50年代初,人们进行了广泛的火箭和卫星的生物学试验。动物实验证明人类可以到宇宙航行后,苏联在60年代初首先载人航天成功。随后研究了人在宇宙飞行的安全返回、失重对人体的影响等,证明人可以在失重条件下有效地工作和健康地生活。随着航天技术的发展,航天医学也相应地迅速发展。
航空航天医学的研究内容
航空航天医学的研究范围非常广泛,低压缺氧是航空航天中的重要环境因素之一。地球周围包绕着一层大气,大气的固定成分主要是氮、氧、二氧化碳等。地平面上的大气压力每一平方厘米承受的大气柱重量为1.033kg,与同样底面积高760mm的汞柱相等,这一压力值即定为标准压力。大气压力随着高度升高而降低。当外界压力降低到266.89mm汞柱(8000米上空)时,人就会发生减压损伤。
外界环境压力降低时,人体组织内、体液中的气体(主要是在血液和组织液中溶解度高的氮气)会游离在血管内形成气泡。形成的气泡在血管内成为气栓堵塞血管,在血管外则压迫局部组织。
血管内的气泡循环到肺部则出现肺血管栓塞,继发肺循环障碍;气泡在肺脏外胸廓内可造成气胸;气栓在心脏血管内可导致循环障碍。气泡压迫局部组织常见于四肢关节,特别是膝关节、肩关节等处,引起剧烈的疼痛,这种现象,称为“屈肢痛”;飞机迅速上升下降时产生的气压剧烈变化,可引起中耳的疼痛,称为航空性中耳炎。
军用飞机飞行时,气压改变迅速剧烈,咽鼓管功能正常的有经验的飞行员都能及时作通气动作,一般也不会发生中耳损伤。所以选拔飞行员时,要注意耳功能。旅客机一般不会经受压力剧变,所以旅客很少发生中耳气压损伤。
航空中的气压变化还可引起乘员的牙痛,称航空性牙痛,多见于军事飞行人员,其特点是以病牙为中心,向耳周围或颌骨处扩散。民航客机气压变化慢,旅客不会出现航空性牙痛。龋齿继发牙髓损伤常是引起牙痛的主要原因,压力降低,髓腔内残留气体膨胀,压迫血管,引起牙痛。牙本质过敏、牙周炎、冠周炎等也可能引起航空性牙痛。
外界压力降低时,空气中的绝对氧分压也相应降低,引起飞行人员的高空缺氧。在3000米高度时人会出现轻度缺氧,4600米高度可发生中等度缺氧,在6100米以上的高度,可出现严重的缺氧状态。脑和感觉器官对缺氧非常敏感,缺氧直接影响乘员的协调动作和智能功能(记忆、理解、判断),严重缺氧会引起意识障碍,导致严重的飞行事故。
现代飞机的飞行高度不超过7000米公里,一般仍可用敞开式座舱。性能较高的飞机则采用密封式增压座舱,它可以有效地防护高空的低压缺氧、低温、高速气流等不良因素对飞行人员的伤害。增压座舱主要由能承受一定压差、具有良好密闭性能的座舱结构和环境控制系统组成。增压座舱可分为通风式、再生式两种。
飞行器升、降时会产生超重,航天器在宇宙空间飞行时会产生失重,两者对人体生理功能均有影响。航空航天飞行器飞行时速度快,机动性强,产生强大的超重(又称加速度、过载)。
重力作用于人体的方向由头至足的则称正超重;反之,重力的方向由足至头时称负超重。正超重时,血液受惯性力作用由上身转移到下身,引起头部、上身缺血,视力障碍,严重时可发生晕厥。训练、穿着抗荷服可提高超重耐力。
航天器发射和返回时同样产生时间较长的加速、减速超重,超重值可达8G左右。高G值的超重,人取坐姿难以适应,所以航天员通常采取仰卧姿,这对人体的影响较轻。人对8G值的横向超重可耐受十多分钟。航天中经受的这种横向超重,一般人都可以耐受。
飞行中各种加速度对人体的前庭器官是一种刺激,在适宜范围内一般不会引起不良反应,当加速度刺激频繁、剧烈,时间较长,超过前庭器官的阈值,即可引起运动病反应。运动病有晕船、晕机、晕车、航天运动病等。主要症状是头晕、恶心、呕吐、出冷汗、面色苍白等。病因与前庭器官密切相关,丧失前庭功能的聋哑人前庭器官发育不全的人,一般不会发生运动病。军事飞行中乘员晕机的较多。民航客机飞行平稳,座舱舒适,发生晕机的旅客一般不超过6%。
失重是航天飞行中的一个特殊物理因素。人体的结构特点,保证人对重力的对抗和适应。载人航天实践证明,失重对人体的生理功能有很大影响,但不像原先想象的那样严重。人在失重条件下连续生活工作365天后,返回地球经短期休息,可完全地恢复健康,并未发生不可逆转的生理变化。
失重引起的人体生理功能变化主要是:
心血管功能改变。失重时人体的流体静压丧失,血液和其他体液不像重力条件下那样惯常地流向下身。相反,下身的血液回流到胸腔、头部,航天员面部浮肿,头胀,颈部静脉曲张,身体质量中心上移。人体的感受器感到体液增加,机体通过体液调节系统减少体液,出现体液转移反射性多尿,导致水盐从尿中排出,血容量减少;出现心血管功能降低征候,如心输出量减少、立位耐力降低等,返回地面后短时对重力不适应。
随着航天的时间延长,心血管功能可在新的水平上达到新的平衡,心率、血压、运动耐力恢复到飞行前的水平。失重引起血容量减少的同时可出现血红细胞、血红蛋白量的减少,这些随着航天时间的延长逐渐恢复正常。
失重时,出现头晕、恶心,腹部不适,体位翻转等运动病症状,称为航天运动病,又称航天适应综合征。发生率约占航天员总数的1/3~1/2。航天初期进入失重后即可发病,持续一周,失重一周之后,前庭功能可对失重适应。有人认为失重时感觉重力的器官将异常信号传入大脑,形成前庭、视觉、运动觉等信号冲突,引起各分析器相互作用素乱,导致航天运动病。航天运动病至今还不能完全预防,发病时可服抗运动病药物。
骨盐代谢素乱。失重会引起人体的骨无机盐代谢素乱,经尿排出的钙磷增加,钙的排出量每月约六克左右。负重的跟骨、股骨等骨盐丧失较大,上肢挠骨、尺骨则较轻。脱钙的原因是适宜载荷垂直负重对骨骼肌肉的刺激减弱或消失,血液供应减少,骨细胞营养改变,破骨细胞功能增强,成骨细胞功能减弱,分解过程大于合成过程。骨盐的丧失引起骨质疏松,而且持续时间很长。
失重引起的肌肉变化,主要表现在对抗重力的肌群张力减弱,甚至萎缩。原因是抗重力肌不需做功,出现废用性萎缩。一般认为人在失重下生活六个月,生理功能不会发生不可恢复的改变。
航空航天飞行中常可出现宇宙辐射对人体的伤害。宇宙辐射主要指从银河系各方面来的高能带电粒子流,由质子、光子、电子组成;其次是太阳发生耀斑时释放出的大量高能带电粒子,绝大多数是质子,其次是“粒子;第三种是地球辐射带的射线,带电粒子在近地球空间为地磁场俘获,形成范围很广的高强度辐射区,称地球辐射带。辐射粒子作用于人体细胞使原子产生电离效应。
宇宙辐射经地球大气层的屏蔽,到达地面的剂量很小,人在地面上生活三十年,平均接受的自然剂量仅是4.35~5.5雷姆(剂量当量单位),所以低空飞行的飞机不会受到宇宙辐射的损害。
载人航天历来重视宇宙辐射对航天员的伤害,航天器及乘员身上都带有各种辐射剂量测定仪,以观察宇宙辐射可能对人体的伤害。观测表明,美苏航天员航天中接受的辐射剂量多数没有达到使人伤害的水平,但少数飞行中航天员接受的辐射剂量比较大。
航天时接受剂量的多少与航行轨道有关,航行轨道高时比轨道低时接受的剂量多。载人航天中还应特别注意重粒子对人的伤害,载人航天器的金属舱壁有防辐射作用,但有一定限度。应尽可能避免航空航天时遭受太阳耀斑的辐射伤害。
飞机乘员的食品供应,应注意营养丰富。飞行前避免食用易产气和富含纤维素的食物,并防止空腹或过饱飞行。航天员的食品除营养丰富、适合口味外,重要的是适合航天条件下食用。航天时舱内一切物体,包括食物,都处于失重状态,会自由飘浮航天食品中肉酱、果酱类半固体食品可装入牙膏状的铝管内,进食时挤压铝管食物即可通过硬塑料管进入口中。这类食品方便安全,但不适合口味,现已少用。面包、点心、肉块、鸡块等可制成一口大小的块状,表面涂有一层可食用的薄膜,以防食品破碎脱屑。
罐装食品是现在航天食品使用最多最受欢迎的食品,内装食品有一定的粘稠性,食用时不会飘浮,性状同地面食品一样。早期的航天食品较简单,仅是一些牙膏软管状和压缩的块状食物,现在航天食品品种有70多种。航天器中还有电热灶,用以加热食品。
长期生活在地球表面昼夜节律周期中的人,心理生理功能逐渐形成与此相适应的人体内环境的平衡,某些功能存在着与昼夜节律相类似的同步变化。外界环境昼夜周期发生变化后,人在短期内不能适应,会出现一些生理功能素乱现象。
大型喷气客机飞行一小时可跨越一个时区。乘喷气客机旅行,高速向东或向西飞行10小时,到达目的地后,两地相较,即提前或推迟10小时。旅客对新的时间不能马上适应,可出现一时性适应困难,引起睡眠障碍、疲劳等症状,同时工作效率降低,体育比赛成绩不理想。因此,有重要任务的旅客(如参加国际会议、重大国际体育比赛者)应力争做到飞行前、飞行后的适应。
飞行前适应是指若向东飞行,飞行前几天就开始每天提早就寝、提早起床,以便尽可能提前适应目的地的环境昼夜节律。飞行后适应是指提前到达目的地,休息1~2天,适应新的环境。
载人航天器绕地球飞行一周,航天员可见到一次日落,一次日出,一天24小时内可见到十几次日落日出的昼夜周期。航天中的昼夜周期是可变的,时间长短决定于载人航天器绕地球飞行的轨道高低,轨道高则昼夜周期长,轨道低则昼夜周期短。
载人航天器飞行轨道一般是近地轨道,绕地飞行一周大约90分钟,24小时内有16个昼夜变化。航天员长期习惯于地球上的昼夜周期,对这种短暂的昼夜变化很不习惯,可出现睡眠不好,易醒、易疲劳,工作效率降低等。航天医学工作者将航天员的作息制度按24小时为一个昼夜周期安排,基本上与地球昼夜周期同步。
|
|
|
|