化学元素中的“天王星”
德国南部出产一种矿物,从十八世纪上半叶起,就有许多矿物学家试图对它进行分类,但意见很不一致。有的认为它是锌矿,有的则把它归入铁矿。1781年发现了新元素钨以后,还有人认为这种矿物中含有钨。
1789年,德国化学家克拉普罗特对这种矿物进行了全分析。他用硝酸处理这种矿物,得到一种黄色溶液,向这种溶液中加入“钾碱”进行中和时,便析出一种黄色沉淀。沉淀物的性质与所有已知元素相应化合物的性质很不一样,所以克拉普罗特认为它是一种新元素的“氧化物”。
于是,克拉普罗特将这种“氧化物”与碳放在一起,加热到很高温度,企图把这种“氧化物”还原成金属。他确实得到了一种金属态的黑色物质,这种黑色物质的化学性质与所有已知元素的化学性质不同,因此克拉普罗特认为自己发现了一种新的元素。
1789年9月4日,克拉普罗特报告了自己的发现,题目是“乌拉尼特(Uranit)——一种新的半金属”。他之所以将“新元素”命名为“乌拉尼特”,是为了纪念八年前新行星——天王星(Uranus)的发现。
次年,克拉普罗特将“新元素”改称为铀(Uranium),他说:“我根据类推法将该新金属的名称由乌拉尼特改为铀”,于是铀的历史就这样开始了。
这种“新元素”的发现确实引起了许多化学家的兴趣,不少人对它进行了研究。但实际上,“新元素”不是元素而是化合物。在长达半个世纪的时间内,竟没有人认识到这一点。克拉普罗特本人一直到死,仍然深信自己发现并分离出了铀元素。
曾有少数人对克拉普罗特的结论表示过怀疑,认为“乌拉尼特”可能是一种化合物。例如瑞典著名化学家贝采利乌斯,就曾试图用纯钾来还原“乌拉尼特”,但末成功;同一时期,阿弗维特逊也曾用氢来还原“乌拉尼特”以及铀和钾的一种二元氯化物,但得到的最终产品依然是“乌拉尼特”。
直到1841年,法国化学家佩里戈特才揭开了“乌拉尼特”的秘密,证实“乌拉尼特”确是铀的化合物而不是元素铀。
佩里戈特将“乌拉尼特”同碳一起加热,并通入氯气,从而得到一种升华出来的氯化铀结晶体。奇怪的是,生成氯化铀所消耗的“乌拉尼特”和氯气的总量竟是化学计算量的110%,而且在气态产物中还含有二氧化碳。这说明,“乌拉尼特”原来是一种金属氧化物。
证实这一结论的实验有很多,例如使四氯化铀水解,得到的产物是“乌拉尼特”和氯化氢,这表示“乌拉尼特”是化合物而不是元素。
为了得到元素铀,佩里戈特采用的也是钾还原法。但他是还原四氯化铀,而不象贝采利乌斯那样还原“乌拉尼特”。
佩里戈特将四氯化铀同钾放一起,放在白金坩锅中加热。因为需要将反应物加热到白热状态,所以这是一个有危险的实验。为了谨慎起见,他把一只小白金坩锅放在一只大白金坩锅里,当小坩锅中的物质开始反应的时候,便立刻把火源熄灭,以免金属钾从白金坩锅中飞溅出来,发生事故。等到激烈的反应变得和缓了,再对白金坩锅加强热,以除去其中所剩余的钾,并使已被还原出来的铀聚结。待到冷却后,用水将其中所含的氯化钾溶解而除去。结果,在留下的黑色残渣中找到了银白色的金属铀颗粒。
至此,一种新的化学元素铀——化学元素中的“天王星”,经过半个多世纪的孕育,才真正诞生了。
1789年克拉普罗特发现含铀化合物“乌拉尼特”的时候,已知的化学元素还只有25种;但是到1841年佩里戈特制得真正的元素铀的时候,已知元素的数目已经增加到55种。这么多的元素,重量有轻有重,性质千差万别,真好似一团乱麻。但是化学家深信物质世界是秩序井然的,因此他们一直试图透过表面的混乱现象,从元素的特性中找出某种内在的规律性来。
1869年,已知化学元素的数目已经增加到62种,俄国化学家门捷列夫终于在前人工作的基础上,把当时象一团乱麻似的杂乱无章的元素理出了一个头绪。他发现,随着元素原子量的增加,元素的性质呈现出明显的周期性变化,这就是著名的元素周期律。两年后门捷列夫加以充实改进的周期表,已经达到了成熟的程度,与现代的周期表已相差无几了。
在编制周期表时,门捷列夫认为元素的性质比它的原子量更为重要,因此当某一元素的性质与它的根据原子量排列的顺序有冲突时时,他便不顾当时公认的原子量,大胆地把它的位置调换一下。例如碲和碘的原子量,当时测定的值分别是128和127,如果按原子量排列,碲应该排在碘的后面。但是门捷列夫把碲提到碘的前面,以便使它位于性质与它非常相似的硒的下面,并使碘位于性质与碘非常相似的溴的下面。
门捷列夫坚信自己已发现了一条最基本的自然规律。因此,为了使排列不违背既定的原则而又没有别的解决办法时,门捷列夫就毫不犹豫地在周期表中留出一些空位。门捷列夫指出,这些空位的元素将来一定会被发现,并预言了这些元素的性质。在轻元素中,他断定将来一定会发现原子量大约等于44、68和72的三种元素:类硼、类铝和类硅。
科学理论对实践有着巨大的推动作用。在随后的十五年中,在门捷列夫还活着的时候,这三个未知的元素——钪、嫁和锗就相继被发现了,它们的性质几乎与门捷列夫预言的完全一样,元素周期律取得了决定性的胜利。
门捷列夫在制订周期表时,还根据元素的性质,并考虑到周期表中的可能位置,校正了一些元素的原子量,其中就包括铀。
铀的原子量,佩里戈特等测得的数值是120。按照这一当时公认的数值,铀应该排在锡(原子量为118)和锑(原子量为122)之间。但是周期表中锡和梯是连续排列的,中间并没有空位,而且按照铀的性质,它也不应该排在这个位置上。
门捷列夫相当准确地将铀的原子量加大了一倍,即加大了为240,这样就使铀排在了比较正确的位置,同时也使铀成了最重的元素。
虽然后来随着新元素的不断发现,一直到锕系理论确立之后,铀才排到了更为合适的位置—锕系元素的第三个成员,但在当时,门捷列夫校正了铀的原子量,确立了铀的最重元素的地位,无疑是一个杰出的成就。
1886年,齐默尔曼测得铀的原子量约为240,从而证实了门捷列夫从理论上对铀原子量所作修改的正确性。
各种元素在周期表中按原子量依次排列,每种元素编有一个序号,称为原子序数。铀排在第92号位置,因此是第92号元素。1913年,莫斯莱应用X射线测定了原子核所带的正电荷的数目,进一步发展了元素周期律。这一工作指明了周期律的真正基础不是原子量,而是原子的核电荷数或核外电子数。同时证实了,原子的核电荷数或核外电子数在数值上正好等于原子序数,从而最终确定了铀是92号元素,并且是当时已知的最重的元素。
铀作为最重的元素,其地位是很特殊的。人们往往习惯于一般而敏感于特殊。早在1871年,门捷列夫就在一篇关于铀的文章中写道:“在所有已知的化学元素中,铀的原子量最大,……我深信,研究铀,从它的天然来源开始,一定会导致许多新的发现。我大胆地建议寻求新的研究课题的人,特别认真地去研究新的铀化合物。”
虽然,铀作为最重的天然元素的意义只有在人们深入到物质的更深层次时,即从分子、原子深入到原子核的时候才能显示出来。这是门捷列夫处在他那个时代时所无法预见的,但是门捷列夫还是首先注意到铀作为最重元素的特殊性,这无疑是有一定先见之明的。
|
|
|
|